Раскроем выражение под знаком модуля, тогда для случая sin>=0 имеем sinx-cosx=cos(90-x)-cos(x)=-2*sin(0,5*(90-2*x))*cos(45)=-2*cos(45)*sin(0,5*(90-2*x)). Так как cos45 - это число, то имеем число, умноженное на sin(0,5*(90-2*x)), то есть периодическую функцию с периодом 360 градусов. Теперь для sin[<0 имеем -sinx-cosx=-cos(90-x)-cos(x)=-cos(90-x)-cos(x)=-(cos(90-x)+cos(x))=-(2*cos(45)*cos(0,5*(90-2*x))), также периодическая функция с периодом 360 градусов. Таким образом, итоговая функция также периодическая с периодом 360 градусов или 2*π.
5а( а + в + с ) – 5в( а – в – с ) – 5с( а + в – с )=5а^2 + 5aв + 5aс – 5ва +5b^2 +5bс – 5са -5cв +5с^2 =5а^2+5b^2 +5с^2 +(5aв – 5ва) +(5bс -5cв) +(5ac-5ac)=5а^2+5b^2 +5с^2
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 10² - 4·3·7 = 100 - 84 = 16
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-10 - √16) / 2* 3 = -14/6 = - 7/3
x2 = (-10 + √16) / 2*3 = -6/6 = -1
-7x² - 4x + 11 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-4)² - 4·(-7)·11 = 16 + 308 = 324
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (4 - √324) / 2*(-7) = -14/14 = 1
x2 = (4 + √324) / 2*(-7) = 22 / (-14) = -11/7
-23x² - 22x + 1 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-22)² - 4·(-23)·1 = 484 + 92 = 576
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (22 - √576) / 2*(-23) = -2 / -46 = 1/23
x2 = (22 + √576) * 2*(-23) = 46 / (-46) = -1
3x² - 14x + 16 = 0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = (-14)² - 4·3·16 = 196 - 192 = 4
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x
x1 = (14 - √4) / 2*3 = 12/6 = 2
x2 = (14 + √4) / 2*3 = 16/6 = 8/3