Стороны прямоугольника равны 6 см и 10 см.
Объяснение:
Пусть одна сторона прямоугольника равна х см,
тогда другая сторона прямоугольника равна (х+4) см.
По условию задачи, площадь прямоугольника равна 60 см².
Составим и решим уравнение:
х(х+4)=60
х²+4х-60=0
D = 4²-4*1*(-60)= 16+240 = 256 =16²
x₁=(-4+16)/2 = 12/2 = 6
x₂=(-4-16)/2 = -20/2 =-10 <0 - данный корень не является решением задачи, т.к. сторона прямоугольника не может быть отрицательным числом.
Итак, х=6 см - одна сторона прямоугольника
х+4=6+4=10 (см ) - другая сторона прямоугольника.
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
12% - x
100% - 200 x
x=12*200/100=24ч не сдали экзамен,а 176 сдали