М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВвОзДуХе
ВвОзДуХе
18.11.2022 19:19 •  Алгебра

Найдите производные функций​

👇
Ответ:
bogussasa7
bogussasa7
18.11.2022

y=\frac{\sqrt{x}+ x+1}{x^{4}+3 }\\\\y'=\frac{(\sqrt{x}+x+1)'*(x^{4}+3)-(\sqrt{x}+x+1)*(x^{4}+3)'}{(x^{4}+3)^{2}}=\frac{(\frac{1}{2\sqrt{x}}+1)(x^{4}+3)-(\sqrt{x}+x+1)*4x^{3}}{(x^{4}+3)^{2}}

2)y=\sqrt{2x^{2}-x+5 }\\\\y'=\frac{1}{2\sqrt{2x^{2}-x+5} }*(2x^{2}-x+5)'=\frac{1}{2\sqrt{2x^{2}-x+5 } }*(4x-1)=\frac{4x-1}{2\sqrt{2x^{2} -x+5} }

4,6(53 оценок)
Открыть все ответы
Ответ:
диана2470
диана2470
18.11.2022
1. По теореме Виета сумма корней равна -4, значит среднее арифметическое корней равно - 2, а не 2.

2. Замена √x=t≥0; √2t^2-t-2=0 - два корня, но один из них отрицательный.
Поэтому и первоначальное уравнение имеет только один корень

3. 2sin xcos x-cos x=0; cos x(2sin x-1)=0; cos x=0 (⇒ x=π/2 или 3π/2)
или sin x=1/2 (⇒ x=π/6 или x=5π/6). Сумма корней равна 3π

4. lg x=t; t^2-2t-9=0; по теореме Виета
t_1+t_2=2⇒x_1·x_2=10^(t_1)·10^(t_2)=10^(t_1+t_2)=10^2=100

5. Условие отображено некорректно.

Замечание. При использовании теоремы Виета необходимо отдельно продумывать существование корней.
4,5(80 оценок)
Ответ:
danilkolisnich
danilkolisnich
18.11.2022
1. По теореме Виета сумма корней равна -4, значит среднее арифметическое корней равно - 2, а не 2.

2. Замена √x=t≥0; √2t^2-t-2=0 - два корня, но один из них отрицательный.
Поэтому и первоначальное уравнение имеет только один корень

3. 2sin xcos x-cos x=0; cos x(2sin x-1)=0; cos x=0 (⇒ x=π/2 или 3π/2)
или sin x=1/2 (⇒ x=π/6 или x=5π/6). Сумма корней равна 3π

4. lg x=t; t^2-2t-9=0; по теореме Виета
t_1+t_2=2⇒x_1·x_2=10^(t_1)·10^(t_2)=10^(t_1+t_2)=10^2=100

5. Условие отображено некорректно.

Замечание. При использовании теоремы Виета необходимо отдельно продумывать существование корней.
4,4(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ