М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BMOPLAY23
BMOPLAY23
06.07.2020 18:44 •  Алгебра

Сравнить обыкновеные дроби 8.17 и 11.21 и еще 0,6 и 4/7

👇
Ответ:
HarryPotter2015
HarryPotter2015
06.07.2020

8/17 < 11/21 так как 168/357 < 187/357

 

0,6 > 4/7 так как 21/35 > 20/35 

4,6(28 оценок)
Открыть все ответы
Ответ:
рксский
рксский
06.07.2020

Объяснение:

Решение квадратного неравенства

Неравенство вида

где x - переменная, a, b, c - числа, , называется квадратным.

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.

В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции

Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.

Такой метод решения квадратного неравенства называется графическим.

4,6(56 оценок)
Ответ:
daniel9876
daniel9876
06.07.2020

Дано: bn – геометрическая прогрессия;

b1 + b2 = 30, b2 + b3 = 20;

Найти: b1; b2; b3 - ?

 

Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),

где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:

b2 = b1 * q^(2 – 1) = b1 * q;

b3 = b1 * q^(3 – 1) = b1 * q^2.

Т.о. имеем:

b1 + b2 = 30;               и             b2 + b3 = 20;

b1 + b1 * q = 30;                        b1 * q + b1 * q^2 = 20;

b1 (1 + q) = 30;                         b1 (q + q^2) = 20;

b1 = 30 / (1 + q).                       b1 = 20 / (q + q^2).

 

Т.е. 30 / (1 + q) = 20 / (q + q^2);

30 * (q + q^2) = 20 * (1 + q);

30q + 30q^2 = 20 + 20q;

30q^2 + 10q – 20 = 0;

D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;

q1 = (-10 + 50) / 60 = 2/3;

q2 = (-10 - 50) / 60 = -1.

Подставим оба полученных значений q выражение для нахождения b1:

b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;

b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.

b2 = b1 * q = 18 * 2/3 = 12;

b3 = b1 * q^2 = 18 * 2/3^2 = 8.

ответ: b1 = 18; b2 = 12; b3 =8.

Объяснение:

4,4(7 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ