Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
ответ:
данные решаются по одному алгоритму.
продемонстрируем на примере первой функции (вторая исследуется аналогично, только функция не определена в точке х=4):
1)
функция не определена в точке x = - 4.
поэтому:
x ∈ (-∞; -4) ∪ (-4; +∞)
2)
находим производную функции:
y'(x) = [(x²+3x)'·(x+4)-(x²+3x)·(x+4)'] / (x+4)²
y'(x) = [(2x+3)·(x+4)-(x²+3x)·1] / (x+4)²
y'(x) = (x²+8x+12) / (x+4)²
3)
приравняем производную к нулю:
x²+8x+12 = 0
x₁ = - 6
x₂ = -2
4)
на интервале x∈(-∞; -6)
y'(x) > 0; функция монотонно возрастает.
на интервале x∈(-6; -4)
y'(x) < 0; функция монотонно убывает.
в точке x = -6 - максимум функции.
y(-6) = - 9
5)
на интервале x∈( -4; -2)
y'(x) < 0; функция монотонно убывает .
на интервале x∈(-2; +∞)
y'(x) > 0; функция монотонно возрастает.
в точке x = - 2 - минимум функции.
y(-2) = -1
6)
для контроля строим график
объяснение: