Постройте график функции у=х²+4х-2
Уравнение графика параболы со смещённым центром, ветви параболы направлены вверх.
Найдём координаты вершины параболы (для построения):
х₀= -b/2a= -4/2= -2
y₀= (-2)²+ 4*(-2) -2 =4 -8 -2= -6
Координаты вершины параболы (-2; -6)
Нужны дополнительные точки для построения графика. Придаём значения х, получаем значения у, составляем таблицу:
х -5 -4 -3 -2 -1 0 1
у 3 -2 -5 -6 -5 -2 3
По найденным точкам можно построить график параболы.
а)Подставляем в уравнение значение х=1,5 получаем у:
у=х²+4х-2
у= (1,5)² + 4*1,5 -2= 2,25+6-2= 6,25
б)Наоборот, заменяем у на 4:
у=х²+4х-2
х²+4х-2=4
х²+4х-6=0, квадратное уравнение, ищем корни:
х₁,₂=(-4±√16+24)2
х₁,₂=(-4±√40)2
х₁,₂=(-4±6,3)2
х₁=5,15
х₂=1,15
в)у=х²+4х-2
y <0
х²+4х-2<0
Решаем, как квадратное уравнение:
х²+4х-2=0
х₁,₂=(-4±√16+8)2
х₁,₂=(-4±√24)2
х₁,₂=(-4±4,9)2
х₁= -4,45
х₂= 0,45
у(х) <0 при -4,45 < х < 0,45
г)Функция возрастает на промежутке ( -2; ∞)
1
Объяснение:
Вообще решается двумя аналитическим и алгебраическим.
1) аналитический
x >= -8 и x <= 5 - ОДЗ
подставляя, мы получаем. Что единственный корень x = 1.
2) алгебраический
sqrt(8+x) - sqrt(5-x) = 1
возводим в квадрат обе части
8+x - 2sqrt(-x^2-3x+40) + 5-x=1
преобразовываем:
sqrt(-x^2-3x+40) = 6
решаем квадратное уравнение
-x^2-3x+4=0
D = 9+16 = 25
x1 = (3+5)/-2 = -4
x2 = (3-5)/-2 = 1
При проверке получается:
x1 = -4 - не подходит
sqrt(4) - sqrt(9) = 1
2 - 3 = 1
-1 != 1
x2 = 1 - подходит
sqrt(9) - sqrt(4) = 1
3 - 2 = 1
1 = 1
10у^2 = 40
у^2 =4
у =2