Чтобы упростить заданные выражения, сначала необходимо раскрыть скобки, для этого умножим значение перед скобками на каждое значение в скобках, а потом приведем подобные слагаемые:
1) 3 * (2х + 1) + 5 * (1 + 3х) = 3 * 2x + 3 * 1 + 5 * 1 + 5 * 3x = 6х + 3 + 5 + 15х = 21х + 8;
2) 4 * (2 + х) - 3 * (1 + х) = 4 * 2 + 4 * x - 3 * 1 - 3 * x = 8 + 4х - 3 - 3х = х + 5;
3) 10 * (n + m) - 4 * (2m + 7n) = 10 * n + 10 * m - 4 * 2m - 4 * 7n = 10n + 10m - 8m - 14n = 2m - 4n;
4) 11 * (5c + d) + 3 * (d + c) = 55c + 11d + 3d + 3c = 58c + 14d.
Объяснение:
1) cos²x + 0,1cosx = 0
нужно для удобства вынести cos²x за скобки:
cos²x( 1 + 0,1) = 0
1,1 * cos²x = 0
мы можем просто поделить левую и правую часть на одно и тоже число, например на 1,1 , дабы избавиться от этого бесполезного числа :)
1,1 / 1,1 это 1 ; а 0 / 1,1 это 0:
cos²x = 0 /// с квадратом также
и получаем:
cos x = 0
косинус x равен нулю только в точке:
x= π/2 + πn , где n€ Z
2) sin тут не совсем понятно, объясните в комментариях к этой записи, что именно тут написано sin x или вы хотели sin²x?