Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
Объяснение:
для начала строим первый график исходной функции
назовем его нулевым
(0) у=3*sin(x/2+pi/6)+1
простите великодушно, но этот график имеется в Вашем предыдущем задании, вы знаете как он выглядит, я лишь выложу готовый график во вложении. взгляните на него. (смотри во вложении).ок.
а) в этом графике зависимость от х совпадает с графиком (0) при положительных х, а при отрицательных график является зеркальным отображением себя относительно вертикальной оси У
(смотри во вложении)
б) этот график отличается от (0) тем, что те значения Y, которые были отрицательны вдруг стали положительны. получается что отрицательная часть графика перевернулась (отразилась) относительно оси Х
(смотри во вложении)
в) этот график отличается от графика а) тем что он как и предыдущий, развернул свои отрицательные значения вверх
(смотри во вложении)
г) строим график а) там где значения y были положительны.
модуль игрека говорит о том что у нас есть две ветки, симметричные относительно оси Х.
строим вторую ветку симметрично только что построенной относительно оси Х
замечание этот график неопределен в тех местах где график а) принимает отрицательные значения, там пропуски
д) этот график имеет две симметричные ветки относительно оси Х
построен может быть из (0) либо из(б) путем дорисовывания симметричной относительно оси Х части к имеющемуся графику
е)а этот график строится из графика в) путем добавления части симметричной исходному относительно оси Х
все графики есть во вложении