2 Сos² 2x -1 +Cos 2x = 0 2 Cos² 2x - Cos x -1 = 0 Решаем как квадратное a) Cos 2x = 1 б) Cos 2x = -1/2 2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z x = +- π/3 + πn,где n∈ Z Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток Разберёмся с указанным отрезком на числовой прямой -π -π/2 0 π/3 а) х = πк,где к ∈Z k = -1 x = -π ( попадает в указанный отрезок) к = 0 х = 0 ( попадает в указанный отрезок) к = 1 к = 2 х = 2π( не попадает в указанный отрезок) б) х = +- π/3 +πn,где n ∈Z n = 0 x = +-π/3 (попадает в указанный отрезок) n = 1 х = π/3 + π( не попадает) х= - π/3 +π ( не попадает) n = -1 x = π/3 - π = -2π/3( попадает) х = -π/3 -π(не попадает)
1)sin250=sin(360-90)=-sin90=-1 2)это формула двойного тангенса получается просто нужно найти тангенс 60 это табличное значение корень из 3 3)sin=4/5 cos=-3/5 там по основному тригонометрическому тождеству находишь косинус так как угол 2 четверти то по окружности смотришь косинус угла второй четверти всегда отрицательный поэтому -3/5 ctg a/2 = 1+cos/sin ctg a/2= 1+(-3/5)/4/5=2/5/4/5=1/2 sin(a+b)=sin a*cos b+ cos a sin b sin(a-b)=sin a* cos b- cos a*sin b sin a*cos b+ cos a sin b-sin b+ cos a/sin a* cos b- cos a*sin b+sin b*cos a там все вроде сократится
ответ:
ответ: