Давай смотреть на картинку: А→ х +15км/ч С х км/ч ← В (встреча) Пусть встреча произошла через t часов. Это значит, что АC = t(x +15) км, а ВС = t x км Что происходит после встречи? а) 1-й автомобиль проезжает СВ за 3 часа со скоростью х+15 км/ч "Слепим" уравнение: tx /3 = х +15 б) 2-й автомобиль проезжает СА за 5 1/3 часа = 16/3 часа "Слепим" ещё одно уравнение: t(x +15)/16/3 = х, ⇒ 3t(x +15)/16 = х Вот теперь нежно и ласково изучаем наши равенства: tx /3 = х +15 3t(x +15)/16 = х Давай разделим одно уравнение на другое ( чтобы t исчезло...) после всех мучений получаем: 16х/9(х +15) = (15 +х)/х Всё. Можно решать: 16х² = 9(х +15)² 16х² = 9х² +270х +225*9 7х² -270х -225*9 = 0 Решаем по чётному коэффициенту: х = (135+-180)/7 х₁ = 45; х₂ = -45/7(посторонний корень) Но нас спрашивают про время до встречи . Спрашивают про t ! Опять цепляемся за уравнение( которое попроще) tx /3 = х +15 t*45/3 = 45 +15 t * 15 = 60 t = 4(часа) ответ: встреча состоялась через 4 часа после начала движения.
Давай смотреть на картинку: А→ х +15км/ч С х км/ч ← В (встреча) Пусть встреча произошла через t часов. Это значит, что АC = t(x +15) км, а ВС = t x км Что происходит после встречи? а) 1-й автомобиль проезжает СВ за 3 часа со скоростью х+15 км/ч "Слепим" уравнение: tx /3 = х +15 б) 2-й автомобиль проезжает СА за 5 1/3 часа = 16/3 часа "Слепим" ещё одно уравнение: t(x +15)/16/3 = х, ⇒ 3t(x +15)/16 = х Вот теперь нежно и ласково изучаем наши равенства: tx /3 = х +15 3t(x +15)/16 = х Давай разделим одно уравнение на другое ( чтобы t исчезло...) после всех мучений получаем: 16х/9(х +15) = (15 +х)/х Всё. Можно решать: 16х² = 9(х +15)² 16х² = 9х² +270х +225*9 7х² -270х -225*9 = 0 Решаем по чётному коэффициенту: х = (135+-180)/7 х₁ = 45; х₂ = -45/7(посторонний корень) Но нас спрашивают про время до встречи . Спрашивают про t ! Опять цепляемся за уравнение( которое попроще) tx /3 = х +15 t*45/3 = 45 +15 t * 15 = 60 t = 4(часа) ответ: встреча состоялась через 4 часа после начала движения.
f ' (x) = ( 4x + 2x^2) ' = (4x) ' + (2x^2) ' = 4(x) ' + 2(x^2) ' =
= 4*1 + 2*2x = 4 + 4x
f ' (x) ≤ 0
4x + 4 ≤ 0 /: 4
x + 1≤ 0
x ≤ - 1
x ∈ ( - ∞; - 1]