а) Строим таблицу абсолютных и относительных частот
Кол-во книг 0 1 2 3 4 5 6
Кол-во школьников
(абсолютная частота) 2 4 3 5 2 3 1 20
Относит. частота 0,1 0,2 0,15 0,25 0,1 0,15 0,05 1
Комментарий к составлению таблицы:
Известно, что количество школьников равно сумме абсолютных частот, т.е. 20 (2+4+3+5+2+3+1=20)
Чтобы найти относительную частоту, надо абсолютную частоту разделить на сумму абсолютных частот
2/20=0,1; 4/20=0,2; 3/20=0,15; 5/20\0,25; 1/20=0,05
б) Самое распространенное число прочитанных книг равно 3 (т.к. по 3 книги прочитали 5 школьников).
в) Проверяем таблицу относительных частот на непротиворечивость. Для этого складываем все значения относительных частот и проверяем, равна ли их сумма числу 1.
0,1+0,2+0,15+0,25+0,1+0,15+0,05 = 1 (верно)
Вывод: Таблица относительных частот непротиворечива.
см ниже
Объяснение:
1) рассмотрим ΔEOD и ΔFOС, у них OF=OE и OD=OC по условию, а ∠EOD = ∠FOС как вертикальные углы при EF∩DC. Следовательно ΔEOD = ΔFOС по двум сторонам и углу между ними
2) рассмотрим ΔEOА и ΔFOB, у них OF=OE и ∠OFB=∠OEA по условию, а ∠EOA = ∠FOB как вертикальные углы при EF∩AB. Следовательно, ΔEOA = ΔFOB по двум углам и прилежащей к ним стороне
3) рассмотрим ΔAOD и ΔBOС, у них OD=OC по условию, а ∠AOD = ∠BOС как вертикальные углы при AB∩DC, AO=OB из 2). Следовательно, ΔАOD = ΔВOС по двум сторонам и углу между ними
f(-x) = 2tg(-5x) = -2 tg(5x) нечётная
Период функции: T = π/5
2) 2sin(x+2) = -√3
sin(x+2) = -√3/2
x + 2 = (-1)^n*arcsin(-√3/2) + πn, n∈Z
x + 2 = (-1)^(n+1)*arcsin(√3/2) + πn, n∈Z
x + 2 = (-1)^(n+1)*(π/3) + πn, n∈Z
x = (-1)^(n+1)*(π/3) - 2 + πn, n∈Z
3) 4sinx+7cosx = 0 /cosx ≠ 0
4tgx + 7 = 0
tgx = - 7/4
x = arctg(-7/4) + πk, k∈Z
x = - tg(7/4) + πk, k∈Z
4) 6tg^2x - tgx - 1 = 0
D = 1 + 4*6*1 = 25
a) tgx = (1-5)12
tgx = - 1/3
x1 = - arctg(1/3) + πn, n∈Z
б) tgx = (1+5)/12
tgx = 1/2
x2 = arctg(1/2) + πk, k∈Z
5) (cos4x - cos2x)/sinx = 0.
cos4x - cos 2x = 0; sinx ≠ 0, x1 ≠ πn, n∈Z
2*[sin(4x+2x)/2 * sin(2x-4x)/2] = 0
sin3x * sin x = 0
a) sin3x = 0
3x = πk, k∈Z
x2 = (πk)/3, k∈Z
б) sinx ≠ 0
ответ: x = (πk)/3 , k∈Z
6) Решите неравенство 1-cos2x < 0.
cos2x > 1
2x = 2πm, m∈Z
x = πm, m∈Z