Итак , 1:4=1/4 часть бассейна наполняют обе трубы за 1 час.
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+6) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+6), а обе - 1/х+1/(х+6) или 1/4 бассейна. Составим и решим уравнение:
1/х+1/(х+6)=1/4 |*4x(x+6)
4x+6+4x=x^2+6x X^2+6x-8x-6=0 X^2-2x-6=0 По идее теперь нужно по теореме Виетта или через дискриминант (или как его там) найти два икса. Один из иксов будет отрицательным наверное . А второй икс и есть наш ответ . Но у меня почему то не получается найти дискриминант . Скорее всего где-то сделала дурацкую ошибку . Но ход решения у меня верный . В этом я уверенна .
Итак , 1:4=1/4 часть бассейна наполняют обе трубы за 1 час.
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+6) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+6), а обе - 1/х+1/(х+6) или 1/4 бассейна. Составим и решим уравнение:
1/х+1/(х+6)=1/4 |*4x(x+6)
4x+6+4x=x^2+6x X^2+6x-8x-6=0 X^2-2x-6=0 По идее теперь нужно по теореме Виетта или через дискриминант (или как его там) найти два икса. Один из иксов будет отрицательным наверное . А второй икс и есть наш ответ . Но у меня почему то не получается найти дискриминант . Скорее всего где-то сделала дурацкую ошибку . Но ход решения у меня верный . В этом я уверенна .
2) (x-3)(2x+1)(8-x)<0
(х-3)(2x+1)(х-8)>0
х1= 3, х2= -0.5, х3= 8
на числововй прямой отмечаете эти точки сначала -0.5, 3, 8
промежутки будут (-0.5; 3) и (8; плюс бесконечность)
3)уравнение:
(4x-1)(3x+2)=0
12х^2+8x-3x-2=0
12x^2+5x-2=0
дискриминант= 25+96= 121, отсюда корень из 121 = 11
х1= -5-11/24= -2/3
х2= -5+11/24= 1/4= 0,25