найдите сумму бесконечной геометрической прогрессии -40; 20; -10; ...
член геометрической прогрессии определяется по формуле
вn=в1*q^(n-1),или в2=в1*q^(2-1)= в1*q¹=в1q
т.к. в1=-40; в2=20, по условию задачи, можно найти q, подставляем данные и находим
20=-40*q, q=-½
т.к не дано найти сумму ограниченного количества членов , то можно рассуждать так, суммы n членов определяется по формуле
Sn=в1*(1-q^n)/(1-q), т.к q=-½, тогда q^n=(-½)^n≈0 при n→∞, (-0,5;0,3;-0,25, т.е при увеличении n, q≈0, и этим членом можно пренебречь), тогда, подставив данные получим
Sn=-40*1/(1-(-½))=-40*2/3=-26⅔
(√13 – 3,5) х<7 - 2√13
x<(7-2√13)/(√13-3,5)
x<(7-2√13)(√13+3,5)/(√13-3,5)(√13+3,5)
x<(7√13+24,5-26-7√13)/(13-12,25)
x<-1,5/0,75
x<-2