Упростим функцию: y=x²+2 - квадратичная парабола, которую можно построить путем сдвига функции у=х² на две единицы вверх вдоль оси OY. у=х²: х -3 -2 -1 0 1 2 3 у 9 4 1 0 1 4 9 у=х²+2: х -3 -2 -1 0 1 2 3 у 11 6 3 2 3 6 11 График см. на рисунке.
Свойства: 1) Область определения: D=R. 2) Область значений: Е=[2;+∞). 3) Значение у=2 является наименьшим, наибольшего нет. 4) Функция чётная. 5) Функция непериодическая. 6) Точек пересечения с осью ОХ нет, т.е. нулей не имеет. 7) Точка пересечения с осью OY (0;2). 8) На промежутке (-∞;0] функция убывает, на промежутке [0;+∞) функция возрастает. 9) На всей области определения, т.е. на R функция принимает положительные значения.
Числа при делении на 9 могут давать остатки 0,1,2,3,4,5,6,7,8,9. поєтому любое натуральное число можно записать в виде
n=9m+r, где m - некоторое неотрицательное число, r - цифра
Используя формулу куба суммы
видим, что остаток от деления числа n^3 такой же как у числа b^3, так как
Рассмотрим остатки от деления кубов одноцифровых чисел
Кубы одноцифровых чисел 0, 1, 8, 27, 64, 125, 216, 343, 512, 729.
Числа 0, 27, 216, 729 при делении нацело на 9 дают остаток 0
Числа 1, 64, 343 при делении нацело на 9 дают в остатке 1
Числа 8, 125, 512 при делении нацело на 9 дают в остатке 8.
Таким образом делаем вывод, что кубы натуральных чисел при делении на 9 могут давать только остатка 0,1 и 8.
Доказано