а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
Объяснение:
x₁ = 1 ; x₂ = 5,5
Объяснение:
(2x+3)/(x^2-4x+4) - (x-1)/(x^2-2x) = 5/x ; ОДЗ: x^2-4x+4≠0 => (x-2)^2≠0 => x≠2 ; x^2-2x≠0 ; x(x-2)≠0 => x≠0
x ≠ 2 ; x ≠ 0
(2x+3)/((x-2)^2) - (x-1)/(x(x-2)) - 5/x = 0
(x(2x+3)-(x-2)(x-1)-5(x-2)^2)/(x(x-2)^2) = 0
(2x^2+3x-(x^2-x-2x+2)-5(x^2-4x+4))/(x(x^2-4x+4)) = 0 | · x(x^2-4x+4)
2x^2+3x-(x^2-x-2x+2)-5(x^2-4x+4) = 0
2x^2+3x-x^2+3x-2-5x^2+20x-20 = 0
x^2+6x-2-5x^2+20x-20 = 0
-4x^2 + 26x - 22 = 0 | : (-2)
2x^2 - 13x + 11 = 0
D = (-13)^2 - 4 · 2 · 11 = 169 - 88 = 81
x₁ = (13 - 9) / 4 = 4 / 4 = 1
x₂ = (13 + 9) / 4 = 22 / 4 = 11 / 2 = 5,5
x₁ = 1, x₂ = 5,5 ; x ≠ 2, x ≠ 0
б) наибольшее=8, наименьшее=0
в) f(0)=2*0²=0
f(-1)=2*(-1)²=2
f(3)=2*(3)²=18