Преобразуем выражение:
(n+6)2-n2 = n²+12n+36-n²= 12n+36 = 12(n+3)
Число 24 можно представить как 12·2
Как видно, в обоих случаях имеется общий множитель 12.
Для того, чтобы данное выражение делилось на 24, нужно, чтобы его второй множитель делился на второй множитель в разложении числа 24, то есть на 2.
Иными словами, множитель (n+3) должен быть чётным.
Сумма двух чисел будет чётным числом, только если оба слагаемых или чётные, или нечётные числа.
Так как 3 - нечётное число, - то и n, следовательно, должно быть нечётным числом.
Таким образом, выражение (n+6)²-n² делится на 24, если n - нечётное число.
2cos²(α/2)=1-cosα=(2-√3)/2;
cos²(α/2)=(2-√3)/4;
cos(α/2)=√(2-√3)/2.
Кстати, такого быть не может! Косинус во второй четверти отрицателен!
sinα=√3/2;
α=2π/3;
cos(α/2)=-cos(π/3)=-0,5.