Известные формулы sin a + sin b = 2sin ((a+b)/2)*cos ((a-b)/2) cos a + cos b = 2cos ((a+b)/2)*cos((a-b)/2) Подставляем в числитель sin 36 + sin 40 = 2sin ((36+40)/2)*cos ((40-36)/2) = 2sin 38*cos 2 cos 62 + cos 42 = 2cos ((62+42)/2)*cos ((62-42)/2) = 2cos 52*cos 10 Но по правилам приведения cos 52 = cos (90-38) = sin 38. Получаем числитель 2sin 38*cos 2 + 2sin 38*cos 10 = 2sin 38*(cos 2 + cos 10) = = 2sin 38*2cos((2+10)/2)*cos((10-2)/2) = 4sin 38*cos 6*cos 4 В знаменателе то же самое, поэтому вся дробь равна 1 ответ: 1
Известные формулы sin a + sin b = 2sin ((a+b)/2)*cos ((a-b)/2) cos a + cos b = 2cos ((a+b)/2)*cos((a-b)/2) Подставляем в числитель sin 36 + sin 40 = 2sin ((36+40)/2)*cos ((40-36)/2) = 2sin 38*cos 2 cos 62 + cos 42 = 2cos ((62+42)/2)*cos ((62-42)/2) = 2cos 52*cos 10 Но по правилам приведения cos 52 = cos (90-38) = sin 38. Получаем числитель 2sin 38*cos 2 + 2sin 38*cos 10 = 2sin 38*(cos 2 + cos 10) = = 2sin 38*2cos((2+10)/2)*cos((10-2)/2) = 4sin 38*cos 6*cos 4 В знаменателе то же самое, поэтому вся дробь равна 1 ответ: 1
y' = 1/3-2/x2
или
y' = (x^2 - 6)/(3x^2)
Приравниваем ее к нулю:
1/3-2/x2 = 0
x1 = -√6
x2 = √6
Вычисляем значения функции
f(-√6) = (-2/3)*√6
f(√6) = (2/3)*√6
fmin = (-2/3)*√6
fmax = (2/3)*√6