Исследовать функцию f (x) = 12x/(9+x²) и построить ее график.
1. Область определения функции - вся числовая ось, так как знаменатель не может быть равен нулю.
2. Функция f (x) = 12x/(9+x²) непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
f(–x) = 12*(–x)/(9+(–x)²) = –(12x(9+x²)) = –f(x).
Функция является нечетной. График функции симметричен относительно начала координат.
Функция непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, 12x/(9+x²) = 0 ⇒ x=0. Значит (0;0) - точка пересечения с осью Ox.
Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
Находим производную заданной функции.x = 3, x = -3 критические точки.
Интервалы возрастания и убывания функции:6. Найдем точки перегибов, для этого надо решить уравнение
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
Вторая производная
Приравниваем нулю и решаем это уравнение.
Для дроби достаточно нулю приравнять числитель:
24x(x²-27) = 0.
Решаем это уравнение: х = 0, х² - 27 = 0
Корни этого уравнения: х₁ = 0. х₂ = √27 =3√3, х₃ = -√27 = -3√3.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
Выпуклая на промежутках
8. Искомый график функции дан в приложении.
2x-3=5-2x
2x+2x=5+3
4x=8
x=8/4
x=2
2x+1=3-x
2x+x=3-1
3x=2
x=2/3
x-4=2-3x
x+3x=2+4
4x=6
x=6/4
x=1.5
2x+5=5-x
2x+x=5-5
3x=0
x=0
x-4=4-x
x+x=4+4
2x=8
x=8/4
x=2
2x-8=11-3x
2x+3x=11+8
5x=19
x=19/5
x=3.8
17x+11=6+12x
17x-12x=6-11
5x=-5
x=-5/5
x=-1
11x-4=4-x
11x+x=4+4
12x=8
x=8/12
x=2/3
x-8=11-12x
x+12x=11+8
13x=19
x=19/13
2x-4=5-x
2x+x=5+4
3x=9
x=9/3
x=3
x/2-3x-2/4=3
0.5x-3x=3+0.5
-2.5x=3.5
x=-3.5/2.5
x=-1.4
21=4х +5
4х=21-5
х= 16/4
х=4