2 (км/час) скорость течения реки.
Объяснение:
Теплохід пройшов 32 км за течією річки на 2 год швидше, ніж 84 км проти течії, Знайдіть швидкість течії, якщо власна швидкість теплохода дорівнює 30 км/год.
Формула движения: S=v*t
S - расстояние v - скорость t - время
х - скорость течения реки.
30+х - скорость теплохода по течению.
30-х - скорость теплохода против течения.
32/(30+х) - время теплохода по течению.
84/(30-х) - время теплохода против течения.
По условию задачи составляем уравнение:
84/(30-х) - 32/(30+х)=2
Общий знаменатель (30+х)(30-х), надписываем над числителями дополнительные множители, избавляемся от дроби:
84*(30+х) - 32*(30-х)=2(30+х)(30-х)
Раскрыть скобки:
2520+84х-960+32х=1800-2х²
Приводим подобные члены:
2520+84х-960+32х-1800+2х²=0
2х²+116х-240=0
Разделим уравнение на 2 для упрощения:
х²+58х-120=0, квадратное уравнение, ищем корни:
D=b²-4ac = 3364+480=3844 √D= 62
х₁=(-b-√D)/2a
х₁=(-58-62)/2
х₁= -120/2= -60, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-58+62)/2
х₂=4/2
х₂=2 (км/час) скорость течения реки.
Проверка:
84/28-32/32=2 (часа разницы), всё верно.
Пусть х км/ч - скорость течения реки, тогда (30 - х) км/ч - скорость катера против течения, (30 + х) км/ч - скорость катера по течению. Уравнение:
84/(30-х) - 32/(30+х) = 2
84 · (30 + х) - 32 · (30 - х) = 2 · (30 + х) · (30 - х)
2520 + 84х - 960 + 32х = 2 · (30² - х²)
116х + 1560 = 1800 - 2х²
116х + 1560 - 1800 + 2х² = 0
2х² + 116х - 240 = 0
Сократим обе части уравнения на 2
х² + 58х - 120 = 0
D = b² - 4ac = 58² - 4 · 1 · (-120) = 3364 + 480 = 3844
√D = √3844 = 62
х₁ = (-58-62)/(2·1) = (-120)/2 = -60 (не подходит, так как < 0)
х₂ = (-58+62)/(2·1) = 4/2 = 2
ответ: 2 км/ч - скорость течения.
x^2+3x > 0
x(x+3)>0
D(y)=(-беск; -3) U (0; + беск)