1. x+x+2=38 (взяли первое чётное число за х, второе соответственно за х+2, ибо оно тоже чётное)
2x=36
x=18
Первое число 18, второе 20 (т.к. первое число у нас х, а второе х+2)
2. х+х+2+х+4=18 (первое число чётное за х, второе за х+2, третье за х+4)
3х=12
х=4
Первое число 4, второе 6, третье 8.
3. х+х+2=24 (тут по аналогии с предыдущими, но за х взяли нечётное число)
2х=22
х=11
Первое число 11, второе 13.
4. х+х+2+х+4=21 (тоже за х взяли нечётное)
3х=15
х=5
Первое число 5, второе 7, третье 9.
Записать первые три члена ряда
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Объяснение:sdg