Объяснение:
1) х+2,6=3,4
х=3,4-2,6
х=0,8
2) 6х=1,2
х=1,2:6
х=0,2
3) 3х-8=15
3х=15+8=23
х= 23:3
х=7,6
4) 2х-3=5х-27
2х-5х=-27+3
-3х=-24
х=24:3
х=8
5)5 (х-2)+3х=6
5х-10+3х=6
5х+3х=6+10
8х=16
х=16:8
х=2
6) 6х-2 (4х-1)=7
6х-8х+2=7
6х-8х=7-2
-2х=5
-х=5:2
-х=2,5
х=-2,5
7) 0,2х-0,1(2х-6)=0,6
0,2х-0,2х+0,6=0,6
0,2х-0,2х=0,6-0,6
0=0
8) х-5 (х+4)=2 (х-8)+8
х-5х-20=2х-16+8
х-5х-2х=20-16+8
-6х=12
-х=12:6
-х=2
х=-2
9)х+22+8 (х-2)=3 (4-х)
х+22+8х-16=12-3х
х+8х+3х=-22+16+12
12х=6
х=6:12
х=0,5
10)х-4,2=6,9
х=6,9+4,2=11,1
х=11,1
11)0,3х=15
х=15:0,3=50
х=50
12) 3х-24=6х+3
3х-6х=3+24
-3х=27
-х=27:3
-х=9
х=-9
13) 5 (х-8)-4 (5х+2)=12
5х-40-20х-8=12
5х-20х=12+40+8
-15х=60
-х=60:15
-х=4
х=-4
14) 2х-4 (х-3)=5 (х+1)-9
2х-4х+12=5х+5
2х-4х-5х=-12+5
-7х=-7
х=7:7
х=1
все что смогла :)
Первое задание смотрите в комментарии. Не хочу нагромождать решение.
Необходимо найти следующую сумму:
S= 1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1)
Преобразуем выражение:
k^2/(2k-1)(2k+1) = 1/8 * ( 2k/(2k-1) + 2k/(2k+1) ) = 1/8 * ( 1 + 1/(2k-1) + 1 - 1/(2k+1) ) = 1/4 + 1/8( 1/(2k-1) - 1/(2k+1) )
Как видим, данную сумму можно представить так:
S = n/4 + 1/8 * (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-3) - 1/(2n-1) + 1/(2n-1) --1/(2n+1) )
Как видим, все в скобках уничтожится, помимо: 1 - 1/(2n+1)
Откуда сумма ряда:
S = n/4 + 1/8 * ( 1 - 1/(2n+1) ) = n/4 + 1/8 * (2n/(2n+1) ) = n/4 * ( 1 + 1/(2n+1) ) =
= n/4 * ( (2n+2)/(2n+1) = n(n+1)/( 2(2n+1) )
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1) =
= n(n+1)/( 2(2n+1) )
Докажем теперь это методом математической индукции:
Проверим тождество для n = 1
1^2/1*3 = 1*2/( 2* 3)
1/3 = 1/3 - верно.
Предположим, что тождество справедливо при n = t:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) = t(t+1)/( 2(2t+1) )
Докажем его справедливость для n = t + 1, то есть необходимо доказать, что:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) = (t+1)(t+2)/( 2(2(t+1)+1) ) = (t+1)(t+2)/(2*(2t+3) )
Доказываем:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2t+1)(2t+3) = 1/2 * (t+1)/(2t+1) * ( t+ (2t+2)/(2t+3) ) =
=1/2 * (t+1)/(2t+1) * ( t + 1 - 1/(2t+3) ) = 1/2 * (t+1)/(2t+1) * ( 2t^2+3t +2t + 3 -1)/(2t+3) = (t+1)(2t^2+5t+2)/(2*(2t+1)(2t+3) ) = (t+1)(t+2)(2t+1)/(2*(2t+1)(2t+3) ) =
= (t+1)(t+2)/(2*(2t+3) ) - верно.
Таким образом, из принципа математической индукции данное тождество доказано.
4x^2 = 384
x^2 = 384/4
x^2 = 96
x1 = -4√6
x2 = 4√6