Смори в 1 у тя одинаковое основание значит можно работать со степенью а∧(2-5)=а∧-3 при умножении степень переносица со знаком + как у тя ща, при делении со знаком - допустим а∧4÷а∧2=а∧(4-2)=а∧2 при возведении в степень со знаком * допустим (у∧2)∧4=у∧(2*4)=у∧8 а при корне допустим ∛4∧5 со знаком деления =4∧(5/3)
№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем: можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка: Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу: Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
а∧(2-5)=а∧-3
при умножении степень переносица со знаком + как у тя ща, при делении со знаком - допустим а∧4÷а∧2=а∧(4-2)=а∧2
при возведении в степень со знаком * допустим (у∧2)∧4=у∧(2*4)=у∧8
а при корне допустим ∛4∧5 со знаком деления =4∧(5/3)