172.
1) 5^(x+y)=125, (1)
3^((x-y)²-1)=1; (2)
5^(x+y)=5³, (1)
3^((x-y)²-1)=3^0; (2)
x+y=3, (1)
(x-y-1)(x-y+1)=0; (2)
y=3-x, (1)
(x-3+x-1)(x-3+x+1)=0; (2)
(2x-4)(2x-2)=0;
2x-4=0;
2x=4;
x1=2
или
2x-2=0;
2x=2;
x2=1.
y1=3-2=1;
y2=3-1=2.
ответ: (2;1), (1;2).
2) 3^x+3^y=12, (1)
6^(x+y)=216; (2)
6^(x+y)=6³;
x+y=3;
y=3-x;
3^x+3^(3-x)=12; (1)
3^(2x)-12*3^x+27=0;
3^x=t;
t²-12t+27=0;
D=144-108=36;
t1=(12-6)/2=3;
t2=(12+6)/2=9;
3^x=3;
x1=1;
3^x=9;
x2=2;
y1=3-1=2;
y2=3-2=1.
ответ: (1;2), (2;1).
3) 4^(x+y)=128, (1)
5^(3x-2y-3)=1; (2)
2^(2(x+y))=2^7, (1)
5^(3x-2y-3)=5^0; (2)
2x+2y=7, (1)
3x-2y-3=0; (2)
2y=7-2x, (1)
3x-7+2x-3=0; (2)
6x=10;
x=10/6=5/3;
y=(7-2x)/2=(7-10/3)/2=11/6.
ответ: (5/3;11/6).
4) 3^(2x-y)=1/81, (1)
3^(x-y+2)=27; (2)
3^(2x-y)=3^(-4), (1)
3^(x-y+2)=3³; (2)
2x-y=-3, (1)
x-y+2=3; (2)
x-y=1;
y=x-1;
2x-x+1=-3; (1)
x=-4;
y=-4-1=-5.
ответ: (-4;-5).
173.
1) 4^(x+y)=16, (1)
4^(x+2y-1)=1; (2)
4^(x+y)=4², (1)
4^(x+2y-1)=4^0; (2)
x+y=2, (1)
x+2y-1=0; (2)
y=2-x; (1)
x+2(2-x)-1=0; (2)
x+4-2x-1=0;
-x=-3;
x=3;
y=2-3=-1.
ответ: (3;-1).
2) 6^(2x-y)=√6, (1)
2^(y-2x)=1/√2; (2)
6^(2x-y)=6^(1/2); (1)
2^(y-2x)=2^(-1/2); (2)
2x-y=1/2, (1)
+
y-2x=-1/2; (2)
0=0
ответ: нет решений.
3) 5^(2x+y)=125, (1)
7^(3x-2y)=7; (2)
5^(2x+y)=5³, (1)
7^(3x-2y)=7^1; (2)
2x+y=3, (1)
3x-2y=1; (2)
y=3-2x; (1)
3x-2(3-2x)=1;
3x-6+4x=1;
7x=7;
x=1;
y=3-2*1=1.
ответ: (1;1).
4) 3^(4x-3y)=27√3, (1)
2^(4y+x)=1/(2√2); (2)
3^(4x-3y)=3^(7/2), (1)
2^(4y+x)= 2^(-3/2); (2)
4x-3y=7/2, (1)
4y+x=-3/2; (2)
x=-3/2-4y,
4(-3/2-4y)-3y=7/2; (1)
-6-16y-3y=7/2;
-19y=19/2;
y=-1/2;
x=-3/2-4(-1/2)=-3/2+2=1/2.
ответ: (1/2;-1/2).
Предлагаю для начала решить уравнение:
(3x² + 2x - 1)/(x + 1) = 5
ОДЗ: x + 1 ≠ 0
x ≠ -1
(3x² + 2x - 1)/(x + 1) * (x + 1) = 5 * (x + 1)
3x² + 2x - 1 = 5 * (x + 1)
3x² + 2x - 1 = 5x + 5
3x² + 2x - 5x - 1 - 5 = 0
3x² - 3x - 6 = 0
D = (-3)² - 4 * 3 * (-6) = 9 + 72 = 81
x₁,₂ = (3 ± √81)/(2 * 3) = (3 ± 9)/6
x₁ = (3 + 9)/6 = 12/6 = 2
x₂ = (3-9)/6 = -6/6 = -1 (посторонний корень, не соответствует ОДЗ).
ОТВЕТ: x = 2.
Отвечаю на Ваш вопрос.
В дробно-рациональных уравнениях (подобных данному) нужно избавляться от знаменателя. Он никуда автоматически не пропадает. Просто все уравнение имеют такую особенность, что если умножить обе чести уравнения на одно и то же число (или выражение), то корни уравнения остаются прежними. В таком случае чтобы "исчез" знаменатель (то есть чтобы от него избавиться) обе части уравнения умножают на общий знаменатель (вторая строчка решения, не учитывая ОДЗ).
если первый член арифметической прогрессии 2, то 2-й член 2+19=21-сложное число
если первый член арифметической прогрессии 3, то 2-й член 3+19=22-сложное число
и т. д.