Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5
Для начала ОДЗ: x ≠ 96
Далее имеем два варианта:
(1) Либо, x - 96 > 0 (x > 96), тогда можем сократить знаменатели и получим x ≥ 1
(2) Либо, x - 96 < 0 (x < 96), тогда при сокращении знаменателя нужно будет перевернуть знак неравенства (т.к. сокращаем на отрицательное число). Получим x ≤ 1
Нас изначально интересует только 2 вариант, т.к. ищем отрицательные значения. В таком случае, x ∈ (-∞ ; 1]. Самым большим целым отрицательным числом на этом промежутке является единица ( -1 )
ответ: x = -1
Все. Будут вопросы - пиши :)
(x-3)(x-3)>x(x-6)
x2-6x+9>x2-6x
x2-6x-x2+6x>9
0>9