Ну короче начинаем. Уравнения с параметром решаются методом перебора возможных случаев.
1)Сложность у нас вызывает то, что параметр находится при переменной x², значит, утверждать о том. что это уравнение квадратное, нельзя.
Тогда предполагаем, если t+1 = 0, то уравнение не является квадратным. Отсюда следует, что t = -1
При этом параметре, уравнение является линейным. которое уже по определению имеет один корень.
2)рассмотрю случай, когда t+1 ≠0 Тогда данное уравнение по логике вещей является квадратным. По условию нам нужно. чтобы уравнение имело один корень. А квадратное уравнение имеет один корень, если его дискриминант = 0. Выделя дискриминант из этого уравнения. Выпишу сначала значения коэффициентов:
a = t+1 ; b = t;c = -1
D = b² - 4ac = t² + 4(t+1)
D = 0 t² + 4t+4 = 0 - надо решить квадратное уравнение
По теореме Виета нахожу его корни:
t1 = -2;t2 = -2
Значит, при t = -2 данное уравнение также будет иметь один корень.
3)У нас есть ещё один случай, когда t = 0, так как второй коэффициент его содержит.
Тогда получим уравнение x² - 1 = 0, оно также имеет 2 корня. Нам это значение не подходит по условию. Значит, уравнение с параметром имеет один корень при t = -1; t = -2. Задача решена
3^( 1 / 5x-2) ≤ (3^-1)^(-1 / 3x- 5);
3^(1 / 5x-2) ≤ 3^(1 / 3x - 5 );
3>1; ⇒1 / 5x-2 ≤ 1 / 3x-5;
1 / 5x-2 - 1/ 3x-5 ≤ 0;
(3x - 5- 5x + 2) / (5x -2)(3x-5) ≤ 0;
(-2x - 3) / (5x-2)(3x-5) ≤ 0; /*(-1) <0;
(2x+3) / (5x -2)(3x -5) ≥ 0;
метод интервалов:
- + - +
[-1,5](0,4)(5/3)___x
x ∈[-1,5; 0,4) U (5/3 ; + бесконечность)