Решение: sin³α+cos³α=(sinα+cosα)(sin²α-sinα*cosα+cos²α) (sinα+cosα)=a (sin²α-sinα*cosα+cos²α) где sin²α+cos²α=1 , в результате получилось: 1-sinα*cosα Найдём неизвестное нам: sinα*cosα из данного нам выражения: sinα+cosα=a возведя левую и правую часть этого выражения в квадрат: (sinα+cosα)²=a² sin²α+2sinα*cosα+cos²α=a² sin²α+cos²α=1 1+2sinα*cosα=a² 2sin*αcosα=a²-1 sinα*cosα=(a²-1)/2 Отсюда: а{1-(а²-1)/2=a*(2-a²+1)/2=a*(3-a²)=(3a-a³)/2
1) x(x - 2) < (x + 2)(x - 4) // Раскроем скобки x² - 2x < x² + 2x - 4x - 8 // Приведём подобные слагаемые в правой части x² - 2x < x² - 2x - 8 // Перенесём всё, что содержит множитель x, в левую часть x² - 2x - x² + 2x < -8 // Приведём подобные слагаемые в левой части 0 < -8 - Неверно. ответ: ∅ (пустое множество или нет корней).
2) 9x² - 12x < (3x - 2)² // Раскроем скобки в правой части 9x² - 12x < 9x² + 4 - 12x // Перенесём всё, что содержит множитель x, в левую часть 9x² - 12x - 9x² + 12x < 4 // Приведём подобные слагаемые в левой части 0 < 4 // Ноль всегда меньше 4, каким бы ни было значение x ответ: x∈(-∞;+∞). (при любом значении x выражение будет верно)
Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
sin³α+cos³α=(sinα+cosα)(sin²α-sinα*cosα+cos²α)
(sinα+cosα)=a
(sin²α-sinα*cosα+cos²α) где sin²α+cos²α=1 , в результате получилось:
1-sinα*cosα
Найдём неизвестное нам: sinα*cosα из данного нам выражения:
sinα+cosα=a
возведя левую и правую часть этого выражения в квадрат:
(sinα+cosα)²=a²
sin²α+2sinα*cosα+cos²α=a² sin²α+cos²α=1
1+2sinα*cosα=a²
2sin*αcosα=a²-1
sinα*cosα=(a²-1)/2
Отсюда:
а{1-(а²-1)/2=a*(2-a²+1)/2=a*(3-a²)=(3a-a³)/2
ответ: (3а--а³)/2