Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
2tg²x+3tgx+1=0
tgx=a
2a²+3a+1=0
D=9-8=1
a1=(-3-1)/4=-1⇒tgx=-1⇒x=-π/4+πn
a2=(-3+1)/4=-1/2⇒tgx=-1/2⇒x=-arctg1/2+πn
cos²x-3sinxcosx+sin²x+cos²x=0/cos²x≠0
tg²x-3tgx+2=0
tgx=a
a²-3a+2=0
a1+a2=3 U a1*a2=2
a1=1⇒tgx=1⇒x=π/4+πn
a2=2⇒tgx=2⇒x=arctg2+πn
2sinx/2cosx/2+cos²x/2-sin²x/2-sin²x/2-cos²x/2=0
2sinx/2cosx/2-2sin²x/2=0/2cos²x≠0
tgx/2-tg²x/2=0
tgx/2(1-tgx/2)=0
tgx/2=0⇒x/2=πn⇒x=2πn
tgx/2=1⇒x/2=π/4+πn⇒x=π/2+2πn