если число больше 0, и оно есть в обеих сторонах неравенства, то мы можем на него сократить без изменения знака
1. a+b>=0
a^3+b^3 >= a^b + ab^2
(a+b)(a^2-ab+b^2) >= ab(a+b) сокращаем на a+b при a+b = 0 это неравенство превращается в равенсто
a^2-ab+b^2 >= ab
a^2-2ab+b^2>=0
(a-b)^2>=0 квадрат всегда больше равен 0
2. ab>0
a/b + b/a >=2
a/b + b/a - 2 >=0
(a^2+b^2 - 2ab)/ab >=0
(a-b)^2/ab >= 0
ab>0 (a-b)^2>=0 первое по условию , второе по определению квадрата
3. ab/c + ac/b + bc/a >= a+b+c при a b c >0
(a^2b^2/abc + a^2c^2/abc + b^2c^2)/abc - abc(a+b+c)/abc >=0
знаменатель отбросим он всегда больше 0 a*b*c>0
2(a^2b^2 + a^2c^2 + b^2c^2 - a^2bc - b^2ac - c^2ab)/2 >=0
умножаем на 2 числитель и знаменатель
(a^2b^2 + a^2c^2 - 2a^2bc + a^2b^2 + b^2c^2 - 2b^2ac + a^2c^2+b^2c^2 - 2c^2ab)/2 >=0
(a^2(b^2-2bc+c^2) + b^2(a^2-2ac+c^2) + c^2(a^2-2ab+b^2))/2 >=0
(a^2(b-c)^2 + b^2(a-c)^2 + c^2(a-b)^2)/2 >=0
слева сумма квадратов деленное на положительное число, всегда больше равно 0
2sinx*cosx+sin^4(x)-cos^4(x)=0
2sinx*cosx+(sin²(x)-cos²(x))(sin²(x)+cos²(x))=0
2sinx*cosx+(sin²(x)-cos²(x))(1)=0
2sinx*cosx+sin²(x)-cos²(x)=0
sin(2x)-cos(2x)=0
sin(2x)=cos(2x)
sin(2x)=sin(pi/2-2x)
2x=pi/2-2x+2pi*n => 4x=pi/2+2pi*n => x=pi/8+pi*n/2
и
2x=pi-(pi/2-2x)+2pi*n => 0=pi/2+2pi*n => в этой ветке решений нет