36.
Объяснение:
Пусть х - цифра из разряда десятков искомого двузначного числа,
у - цифра из разряда единиц, =>
(10х +у) - искомое двузначное число.
(х + у) - сумма цифр, => 4(х + у) = 10х + у ; (1)
(ху) - произведение цифр, => 2ху = 10х + у. (2)
Решим первое уравнение:
4(x + y) = 10x + y
4x + 4y = 10x + y
4y - y = 10x - 4x
3y = 6x
у = 2х
Подставим у = 2х во второе уравнение:
2х * 2х = 10х + 2х
4х² = 12х
4х = 12
х = 12 : 4
х = 3 - цифра из разряда десятков искомого двузначного числа.
у = 2 * 3 = 6 - цифра из разряда единиц.
36 - искомое двузначное число.
Проверка:
36 : (3 + 6) = 36 : 9 = 4
36 : (3 * 6) = 36 : 18 = 2
IxI=x, если x>=0; IxI=-x, если x<0
Уравнения с модулем решаются так:
находим нули выражений под знаком модуля
2x-5=0⇒x=5/2
Числовая ось разбивается этим значением на 2 интервала:
(-∞; 5/2); [5/2;+∞)
Рассматриваем решение на каждом из этих интервалов:
1) x∈(-∞; 5/2)
В этом интервале 2x-5<0⇒I2x-5I=-(2x-5)=5-2x⇒
p-x=5-2x⇒2x-x=5-p⇒x=5-p
решение будет в том случае, если (5-p)∈(-∞; 5/2), то есть
5-p<5/2.
Соответственно, решения не будет, если (5-p)>=5/2⇒
p<=5-5/2; p<=5/2; p∈(-∞; 5/2]
2) x∈[5/2;+∞)
В этом интервале 2x-5>0⇒I2x-5I=2x-5⇒
p-x=2x-5⇒2x+x=p+5⇒3x=p+5⇒x=(p+5)/3
решение будет в том случае, если (p+5)/3∈[5/2;+∞), то есть
(p+5)/3>=5/2⇒p+5>=15/2
Соответственно, решения не будет, если p+5<15/2⇒
p<15/2-5; p<5/2; p∈(-∞; 5/2)
Учитывая решения 1) и 2), получим:
Если p∈(-∞; 5/2), то уравнение не имеет решений.