М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Andrebro9
Andrebro9
11.10.2022 21:13 •  Алгебра

Найти производные функции u(x)=1/5sin5x

👇
Ответ:
cross666
cross666
11.10.2022

////////////////////////////////////////


Найти производные функции u(x)=1/5sin5x
4,7(18 оценок)
Ответ:
12312312712
12312312712
11.10.2022

u(x)=1/5 sin 5x

u(x) =cos 5x
4,7(38 оценок)
Открыть все ответы
Ответ:
funfup
funfup
11.10.2022
Короче вот пример
Какие неравенства можно решить?

Эта математическая программа подробно решает следующие неравенства с одной переменной.

Линейные
Неравенства сводящиеся к виду: \( ax+b > 0 \) (знак сравнения любой).
Например:

\( 2x-5 \leq 0 ; \)\( 2x-5 > 4-5x ; \)\( 2(x-5)+1 > 4-5x ; \)\( 2x^2-5x+7 \geq 2x^2-6x \)

Квадратные
Неравенства сводящиеся к виду: \( ax^2+bx+c > 0 \) (знак сравнения любой).
Например:

\( 2x^2+4x-5 < 0 ; \)\( 6x-1 > x^2-x ; \)\( (x-2)^2+1 \leq 3x-5; \)и такое тоже \( -4x^3-5x+7 \geq -4x^3+x^2-6x+1 \)

Дробные
Неравенства сводящиеся к виду: \( \Large \frac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}\normalsize > 0 \) (знак сравнения любой).

Коэффициенты \( a_1 \) и \( a_2 \) могут быть нулевыми, т.е. и в числителе и в знаменателе дроби может быть и линейный и квадратный многочлен.
Например:

$$ \frac{-x^2+2x-3}{4x+1} > -3x-1 ; \frac{5}{4(x+1)(x-3)-x+6} < 2x-5 ; \frac{4x^2-2}{1-x-3x^2} < 2 ; $$и т.д.

Разбитые на множители
Если в правой части - ноль, а в левой части полином(ы) разбит(ы) на линейные множители, т.е. множители вида \( ax+b \) 
Например:

$$ -(2x-1)x(x-2)^2 > 0 ; \frac{-1}{4(x+1)(x-3)^3} < 0 ; \frac{-4(2-3x)(2-x)}{x^2+x-5} \geq 0 ; $$и т.д.
4,7(89 оценок)
Ответ:
Первое уравнение однородное. Делим его на y^2 и получаем квадратное уравнение относительно x/y. Решаем это уравнение и получаем два случая x/y=1/2 x/y=-2, откуда можно выразить одну переменную через другую: y=2x и x=-2y. Подставляем это выражение во второе уравнение и получаем квадратное уравнение относительно одной из переменных. Решаем его, а потом находим вторую переменную из условия подстановки. В результате может получиться от нуля до четырех решений, в зависимости от того сколько корней имеет это второе квадратное уравнение. Отдельно надо убедиться, что y<>0, и мы можем делить на y^2.
4,6(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ