12мин=0,2ч 45мин=0,75ч всё расстояние между А и Б примем за единицу х-время велосипедиста х-0,75 время мотоциклиста 1/х скорость велосипедиста 1/(х-0,75) скорость мотоциклиста 1/0,2=5 скорость сближения 1/х+1/(х-0,75)=5 х-0,75+х=5х(х-0,75) 5х²-3,75х+0,75=0 разделим всё на 5 х²-1,15х+0,15=0 Д=1,15²-4*0,15=1,3225-0,6=0,7225=0,85² х₁=(1,15-0,85):2=0,15ч=15/100 от 60мин =9минут, что не может удовлетворять условию, так как они вместе до встречи едут 12мин, значит , за 9 мин проехать всё он никак не может х₂=(1,15+0,85):2=1час ответ : велосипедист проезжает за 1 час
Можно попробовать разбить на систему неравенств: 1/3≤(x^2-x+1)/(x^2+x+1) и (x^2-x+1)/(x^2+x+1)≥3 после приведения к общему знаменателю, переносу в левую часть и упрощения получаем: (x-1)^2/(3(x^2+x+1))≥0 и -(x+1)^2/(x^2+x+1)≤0 далее рассуждаем: первое неравенство- дробь больше или равна нулю в двух случаях, когда числитель больше или равен нулю, знаменатель больше нуля и когда числитель меньше или равен нулю и знаменатель меньше нуля. В нашем случае, независимо от значений x, числитель больше или равен нулю, знаменатель всегда строго больше нуля. Следовательно данная дробь всегда положительна. Аналогичные рассуждения со второй дробью. Она всегда отрицательна или равна нулю- числитель при любых x отрицательный, а при x=-1 равен нулю. А знаменатель всегда положительный. Следовательно выполняется указанное двойное неравенство. ч.т.д.
х1+х1=-b
x1*x2=c
1) -1.3+3= 1.7 b=-1.7
-1.3 * 3 = -3.9 c=-3.9
2) 0.3+ (-0.1) = 0.2 b=-0.2
-0.1 * 0.3 = -0.03