М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Шекспир112005
Шекспир112005
08.03.2022 20:17 •  Алгебра

Разложите на множители (2а+b)(5a-b)-3a(2a+b)

👇
Ответ:
ElDiablo1337
ElDiablo1337
08.03.2022

(2a+b)(5a-b)-3a(2a+b)=(2a+b)(5a-b-3a)=(2a+b)(2a-b)

4,7(84 оценок)
Открыть все ответы
Ответ:
dasha20015678
dasha20015678
08.03.2022

3) Противоположные боковые ребра образуют треугольник с диагональю основания, которая равна √2*√2=2= бок.ребру, значит, этот треугольник правильный, и любой угол в нем - 60°.

4) Рассмотрим диагональное сечение пирамиды. Так как высота вдвое меньше бокового ребра, угол при основании пирамиды будет равен 30° по теореме о гипотенузе, равной двум катетам. Все сечение - равнобедренный треугольник, значит, угол при вершине равен 180°-2*30°=120°.

5) Апофема (высота боковой грани) и боковое ребро дают прямоугольный треугольник с половиной ребра основания => половина ребра основания по теореме Пифагора = 1. Рассмотрим плоскость, в которой лежат апофема и высота пирамиды. Расстояние между основанием апофемы и основанием высоты равно половине ребра основания и равно 1. Значит, косинус угла между этой половиной и апофемой (а это и есть угол между боковой гранью и основанием) равен 1/2 (апофема равна 2), значит, угол равен 60°.

4,6(67 оценок)
Ответ:
milana2709
milana2709
08.03.2022

Раскрываем модуль по определению:

1-ax ≥0  ⇒  ax ≤ 1

Уравнение принимает вид:

1-ax=1+(1-2a)x+ax^2

ax^2+(1-a)x=0

На плоскости хOа

ax ≤ 1 ⇒  a≤1/x- область между двумя ветвями гиперболы a=1/x

ax^2+(1-a)x=0  ⇒  ax^2+x-ax=0  ⇒  a·(x^2-x)=-x  ⇒  a=-1/(x-1)

Уравнение имеет решение в области при

a∈(-∞;0)U(0;2]

см. рис.1

1-ax < 0  ⇒  ax > 1

Уравнение принимает вид:

-1+ax=1+(1-2a)x+ax^2

ax^2+(1-3a)x+2=0

На плоскости хOа

ax >  1 ⇒  a> 1/x-  внешняя часть  гиперболы a = 1/x

ax^2+(1-3a)x+2=0  ⇒  ax^2+x-3ax+2=0  ⇒  a·(x^2-3x)=-x-2  ⇒  a=-(х+2)/(x^2-3x)

Исследуем функцию с производной и строим график.

Уравнение имеет решение в области при

a∈(-∞;0)U [2;+∞)

см. рис. 2

ответ.  a∈(0;2) U(2;+∞)


желательно через плоскость aox (но можно и любым другим
4,7(47 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ