М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Spamm
Spamm
06.04.2020 13:44 •  Алгебра

Верно ли тождество ? 1.(x^2-y^2)(x-y)=(x-y)(x^2-y^2)

👇
Ответ:
matanya281
matanya281
06.04.2020
(x^2-y^2)(x-y)=(x-y)(x^2-y^2)
(x-y)(x+y)(x-y)=(x-y)(x+y)(x-y)
ответ: тождество верное
4,6(65 оценок)
Открыть все ответы
Ответ:
АндрейZAV
АндрейZAV
06.04.2020
1. Разложим cos 4x по формуле 2-г угла получим
cos 4x =  1 - 2 sin^2 2x 
2.Свернем 26 sin x cos x по формуле 2-го угла для sin и получим 
13 sin 2x
3.Теперь наше уравнение выглядит как
13 sin 2x - (1 - 2 sin^2 2x) + 7 = 13 sin 2x - 1 + 2 sin^2 2x + 7 =  2 sin^2 2x + 13 sin 2x + 6 = 0
Делаем замену t = sin 2x  t^2 = sin^2 2x
4.Получаем квадратное уравнение 
2t^2 + 13t + 6 = 0
Находим корни 
t1 = -0.5
t2 = 6

так как sin 2x может быть только -0.5 считаем корень для этого значения

sin 2x = -1/2
2x = (-1^n) * arcsin(-1/2) + pin, n∈Z
2x = (-1^n+1) * arcsin(1/2) +  pin, n∈Z - здесь мы убрали минус из под arcsin

ответ : x = (-1^n+1) * pi/6 + pin/2, n∈Z
 
Надеюсь объяснил подробно!)
4,5(93 оценок)
Ответ:
Марк2992
Марк2992
06.04.2020
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ