М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Eva27092006
Eva27092006
21.04.2022 13:28 •  Алгебра

Явас умоляю, мне это нужно вас выражение (3abc)^3(-) делить на 9a^2b^2c^2

👇
Ответ:
zina0155
zina0155
21.04.2022
Решение в фото:
_________________________
Явас умоляю, мне это нужно вас выражение (3abc)^3(-) делить на 9a^2b^2c^2
4,7(57 оценок)
Открыть все ответы
Ответ:
Nasti12
Nasti12
21.04.2022

Запишем матрицу в виде:

1 2 -2

-2 -1 1

1 -2 1

Главный определитель

∆=1*((-1)*1 - (-2)*1) - (-2)*(2*1 - (-2)*(-2)) + 1*(2*1 - (-1)*(-2)) = -3

Определитель отличен от нуля, следовательно, матрица является невырожденной и для нее можно найти обратную матрицу A-1.

Обратная матрица будет иметь следующий вид:

 

A11       A21     A31

A12    A22 A32

A13    A23 A33

где Aij - алгебраические дополнения.

Транспонированная матрица.

AT=  

1       -2       1

2      -1       -2

-2     1        1

Найдем алгебраические дополнения матрицы AT.

A1,1 = (-1)1+1  

-1       -2

1        1

∆1,1 = ((-1)*1 - 1*(-2)) = 1

A1,2 = (-1)1+2  

2       -2

-2       1

∆1,2 = -(2*1 - (-2)*(-2)) = 2

A1,3 = (-1)1+3  

2       -1

-2       1

∆1,3 = (2*1 - (-2)*(-1)) = 0

A2,1 = (-1)2+1  

-2      1

1        1

∆2,1 = -((-2)*1 - 1*1) = 3

A2,2 = (-1)2+2  

1       1

-2     1

∆2,2 = (1*1 - (-2)*1) = 3

A2,3 = (-1)2+3  

1      -2

-2      1

∆2,3 = -(1*1 - (-2)*(-2)) = 3

A3,1 = (-1)3+1  

-2       1

-1      -2

∆3,1 = ((-2)*(-2) - (-1)*1) = 5

A3,2 = (-1)3+2  

1        1

2      -2

∆3,2 = -(1*(-2) - 2*1) = 4

A3,3 = (-1)3+3  

1       -2

2      -1

∆3,3 = (1*(-1) - 2*(-2)) = 3

Обратная матрица:  

           1       2     0

=1/-3   3      3      3

          5      4      3

A-1=  

-1/3      -2/3      0

-1            -1       -1

-5/3     -4/3       -1.

Проверим правильность нахождения обратной матрицы путем умножения исходной матрицы на обратную. Должны получить единичную матрицу E.

E=A*A-1=  

1       2     -2

-2     -1      1

1      -2       1

 

          1       2      0

1/-3    3      3      3

         5      4      3

E=A*A-1=

1*1+2*3+(-2)*5 1*2+2*3+(-2)*4 1*0+2*3+(-2)*3

(-2)*1+(-1)*3+1*5 (-2)*2+(-1)*3+1*4 (-2)*0+(-1)*3+1*3

1*1+(-2)*3+1*5 1*2+(-2)*3+1*4 1*0+(-2)*3+1*3 =

 

                -3       0     0

 = 1/-3      0      -3        0

                0       0      -3

A*A-1=  

1        0      0

0       1       0

0       0       1.

Решение верно.


Найти обратную матрицу
4,4(14 оценок)
Ответ:
шедвер
шедвер
21.04.2022
1а) скобка у=1-7х              
                4х-у=32
4х+1+7х=32
4х+7х=32+1
11х=33х=33/11
х=3
у=1-7*3
у= - 20

1б) скобка х=у+2
                3х-2у=9
3*(у+2)-2у=9
3у+6-2у=9
3у-2у=9-6
у=3
х=3+2
х=5

2а) скобка 5х-3у=14               скобка 5х-3у=14
                2х+у=10                           у=10-2х
5х-3*(10-2х)=14
5х-30+6х=14
5х+6х=14+30
11х=44
х=44/11
х=4
у=10-2*4
у=2

2б) скобка х+5у=35              скобка х=35-5у
                 3х+2у=27                      3х+2у=27
3*(35-5у)+2у=27
105-15у+2у=27
-13у=27-105
-13у=-78
13у=78
у=78/13
у=6
х=35-5*6
х=5

3а) скобка 2х-у=2          скобка - у=2-2х          скобка у= - 2+2х
                3х-2у=3                    3х-2у=3                    3х-2у=3
3х-2*( - 2+2х)=3
3х+4-4х=3
3х-4х=3-4
- х=-1
х=1
у= - 2+2*1
у=0  

3б) скобка 5у-х=6             скобка - х=6-5у              скобка х= - 6+5у
                3х-4у=4                       3х-4у=4                         3х-4у=4
3*( - 6+5у)-4у=4
- 18+15у-4у=4
11у=4+18
у=22/11
у=2
х= - 6+5*2
х= - 6+10
х=4
4,4(6 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ