Объяснение:
1)Найди решение неравенства. Начерти его на оси координат.
x>4.
На числовой оси отметить ноль по центру, от нуля вправо отложить четыре клеточки, это будет точка х=4. Теперь от этой точки штриховать вправо, как бы до + бесконечности. Неравенство строгое, поэтому точка 4 должна обозначаться маленьким кружком, пустым внутри.
ответ: x∈(4;+∞]
2)Отобрази решение неравенства 1≤z на оси координат. Запиши ответ в виде интервала.
На числовой оси отметить ноль по центру, от нуля вправо отложить одну клеточку, это будет точка z=1, от этой точки влево штриховать, как бы до - бесконечности.
Интервал: z ∈(-∞, 1)
⦁ Длины сторон треугольника обозначены как a, b и c. Какие из неравенств неверны?
Неясное задание.
3) Известно, что b>c.
Выбери верные неравенства:
7,9−b>7,9−c
−7,9b<−7,9c
7,9b>7,9c
b+7,9>c+7,9
b−7,9>c−7,9
Выделены верные неравенства.
1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5
5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.
11) найдите sin²a, если cos2a = 1/5
sin²a = (1 - cos2a)/2 = (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.
12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1
(-x2-8)(x+1) Это надо было сделать?