См. Объяснение
Объяснение:
1) Раскроем скобки в левой и правой части неравенства:
х²-10х+3х-30<х²-2х-5х+10
х²-7х-30<х²-7х+10
2) Так как любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный, то все члены правой части неравенство перенесём в левую часть, изменив их знаки на противоположные:
х²-7х-30- х²+7х-10<0.
3) Таким образом, мы так преобразовали первоначальное неравенство, что теперь надо доказать, что левая часть преобразованного неравенства меньше нуля.
х² и (- х²) - сокращаются;
(-7х) и (+7х) - сокращаются;
а оставшееся число
(-40) <0.
Получив в итоге число (-40), которое меньше 0, мы таким образом доказали, что действительно:
(х+3)(х - 10) < (х-5)(х - 2).
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.