Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²? Если а-б = 4, тогда б-а = - 4 12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
3x^2+24x+16-6x^2-9x+4x+6=0
-3x^2+19x+22=0
D=b^2-4ac=19^2-4*(-3)*22=625
корень из дискриминанта =25
x1=== (-19-25)/(2*(-3))=7.3
x2(-19+25)/(2*(-2))=-1.5