Пусть вторая труба наполняет бак за х часов, тогда первая наполнит его за х-2 часа. Отсюда производительность первой трубы 1/(х-2), а второй трубы 1/х. Их общая производительность 1/175/60 (2 часа 55 минут - это 175/60 часа) или 60/175. Можно записать уравнение 1/(х-2)+1/х=60/175 1/(х-2)+1/х-60/175=0 (х+(х-2))*175-60х(х-2)=0 350х-350-60х²+120х=0 Для удобства сократим на 10 и умножим на -1 6х²-47х+35=0 D=(-47)-4*6*35=2209-840=1369 x₁=(47-37)/12=10/12=5/6 x₂=(47+37)/12=7 5/6 часа нам не подходит, уж слишком небольшой промежуток времени, в вот 7 часов как раз то, что надо. Значит вторая труба наполняет бак за 7 часов, а первая за 7-2=5 часов.
1) А - событие Р(А) - вероятность события p₁=0.9/5=0.18 p₂=0.8/12=0.07 p₃=0.7/8=0.0875 p₁⁻=0.9 p₂⁻=0.8 p₃⁻=0.7 P=p₁*p₁⁻+p₂*p₂⁻+p₃*p₃⁻ P=0.18*0.9+0.07*0.8+0.0875*0.7 P(A)≈0.28 Р_А(В₁) - вероятность события для отличников Р_А(В₂) - для хорошистов Р_А(В₃) - для троечников P_А(B₁)=P(B₁)*P_B₁(A)/P(A)=0.9*0.18/0.28=0.57 P_A(B₂)=0.8*0.07/0.28=0.2 P_A(B₃)=0.7*0.085/0.28≈0.22
2) p=P(A)=0.8 q=P(A⁻)=1-p=1-0.8=0.2 - q - вероятность противоположного события P₁₀₀(20)=C²⁰₁₀₀*0.8²⁰*0.2¹⁹=4.606 P₁₀₀(60)=C⁶⁰₁₀₀*0.8⁶⁰*0.2⁵⁹≈3.195 (4.606+3.195)/2=3.9 Вероятность не менее 20 и не более 60 = 3.9 P₁₀₀(80)=C⁸⁰₁₀₀*0.8⁸⁰*0.2⁷⁹≈2.93 Вероятность 80 раз ≈2.93