1)1/x-1=2/x+1 2)x/x-5=x-2/x-6
1/x-1=2/x+1,x≠1,x≠-1 x/x-5=x-2/x-6,x≠5,x≠6
x+1=2(x-1) x*(x-6)=(x-2)*(x-5)
x+1=2x-2 x^2-6x=x^2-5x-2x+10
x-2x=-2-1 -6x=-5x-2x+10
-x=-3 -6x=-7x+10
x=3,x≠1,x≠-1 -6x+7x=10
x=3 x=10,x≠5,x≠6
3) 3/y-2=2/y-3 x=10
3/y-2=2/y-3,y≠2,y≠3 4)z+1/z-1=z-5/z-3
3(y-3)=2(y-2) z+1/z-1=z-5/z-3,z≠1,z≠3
3y-9=2y-4 (z+1)*(z+3)=(z-5)*(z-1)
3y-2y=-4+9 z^2-3z+z-3=z^2-z-5z+5
y=-4+9 -3z+z-3=-z-5z+5
y=5,y≠2,y≠3 -2z-3=-6z+5
y=5
Объяснение:
( 8 * ( 12 + 18 ) ) : ( 3 - 2 )
Объяснение:
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.
2)4y^2+1
3)x^2-4