Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно: --------------------------------------------------------------- 7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).
1) Куб суммы двух выражений равен кубу первого выражения(а³) плюс устроенное произведение квадрата первого выражения и второго выражения(3а²b) плюс устроенное произведение первого выражения и квадрата второго выражения(3ab²) плюс куб второго выражения(b³). В итоге a³ + 3a²b + 3ab² + b³. 2) Куб разности двух выражений равен кубу первого выражения(a³) минус устроенное произведение квадрата первого выражения и второго выражения(3a²b) плюс устроенное плюс устроенное произведение первого выражения и квадрата второго выражения(3ab²) минус куб второго выражения (b³). В итоге a³ - 3a²b + 3ab² - b³
= ( 2/9 ) * ( 2/54 ) = ( 2/9 ) * ( 1/27 ) = 2/243
ОТВЕТ 2/243