(1/cos^2x)+(1/cosx)=2 Приводим к общему знаменателю, для этого 2 слагаемое левой части уравнения умножаем на cosx: (1/cos^2x)+(cosx/cos^2x)=2 1+cosx/cos^2x=2 Для того чтобы избавиться от знаменателя и привести уравнение к линейному виду умножаем на cos^2x, получаем: 1+cosx=2cos^2x 2cos^2x-cosx-1=0 Пусть cosx=t, тогда получаем следующее квадратное уравнение: 2t^2-t-1=0 Далее решаем квадратное уравнение: находим корни по теореме Виета: 2-1-1=0 => t(1)=1, t(2)=-1/2 Так как t=cosx, то: 1) cosx=1 2)cosx=-1/2 x=2n x=+-2/3+2n
Y=x⁴-8x² 1) Находим область определения функции: D(y)=R Данная функция непрерывна на R 2) Находим производную функции: y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2) 3) Находим критические точки: D(y`)=R y`(x)=0 4x(x-2)(x+2)=0 x=0 или х=2 или х=-2 4) Находим знак производной и характер поведения функции: - + - + -202 ↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2) у(х) - возрастает на (-2;0)U(2;+∞) х=-2 и х=2 - точки минимума функции х=0 - точка максимума функции -2; 0; 2- точки экстремума функции у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16 у(2)=2⁴-8*2²=16-8*4=16-32=-16 у(0)=0⁴-8*0²=0-0=0 ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Приводим к общему знаменателю, для этого 2 слагаемое левой части уравнения умножаем на cosx:
(1/cos^2x)+(cosx/cos^2x)=2
1+cosx/cos^2x=2
Для того чтобы избавиться от знаменателя и привести уравнение к линейному виду умножаем на cos^2x, получаем:
1+cosx=2cos^2x
2cos^2x-cosx-1=0
Пусть cosx=t, тогда получаем следующее квадратное уравнение:
2t^2-t-1=0
Далее решаем квадратное уравнение: находим корни по теореме Виета:
2-1-1=0 => t(1)=1, t(2)=-1/2
Так как t=cosx, то:
1) cosx=1 2)cosx=-1/2
x=2