* * * * * * * * * * * * * * * * * * * * * * *
Решить уравнение |x-2| - |x-3| +|2x -8| = x
ответ: { 3 ; 7 }
Объяснение: |x-2| - |x-3| +|2x -8| =x ⇔ |x-2| - |x-3| +2|x - 4| =x
а) x < 2 иначе x ∈ (- ∞ ;2)
-(x-2)+ (x-3) - 2(x - 4) = x ⇔ 3x =7 ⇔ x = 7/3 ∉ (- ∞ ;2) * * * 7/3> 2 * * * ;
б) 2 ≤ x < 3 иначе x ∈ [2 ;3)
(x-2)+ (x-3) - 2(x - 4) = x ⇔ x = 3 ∉ [2 ;3) ;
в) 3 ≤ x < 4 иначе x ∈ [3 ;4)
(x-2)- (x-3) - 2(x - 4) = x ⇔ x = 3 ;
г) x ≥ 4 иначе x ∈ [4 ;∞)
(x-2) - (x-3) + 2(x - 4) = x ⇔ x=7 .
Это делается так.
Во-первых, нужно рассчитать содержание ЧИСТОЙ кислоты в каждом из растворов (любой водный раствор состоит из чистой кислоты и растворителя).
В 30%-ном растворе массой Х кг содержится 0,30*Х кг чистой кислоты.
В 60%-ном растворе массой Yкг содержится 0,6*Y кг чистой кислоты.
Вода принимается за 0%-ный раствор - она кислоты не содержит.
При смешивании согласно условию задачи
общая масса раствора после смешения равна (X + Y + 10) кг
Чистой кислоты там содержится (0,30*Х + 0,6*Y) кг чистой кислоты.
Таким образом, (0,30*Х + 0,6*Y)/(X + Y + 10) = 0,36 (это первое уравнение системы)
Аналогичным образом составляется второе уравнение и решается система.
Остались вопросы в личку, разберемся.