М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BMBelenapertsevanika
BMBelenapertsevanika
14.05.2022 09:42 •  Алгебра

20 укажите неравенство, которое не имеет решений. 1)x^2-8x-83> 0 2)x^2-8x+83< 0 3)x^2-8x-83< 0 4)x^2-8x+83> 0

👇
Ответ:
илья1968
илья1968
14.05.2022
Вариант 2). Т.к. дискриминант отрицательный, значит парабола выше оси иксов, а требуется чтобы были точки ниже.
4,5(26 оценок)
Открыть все ответы
Ответ:
autosteklo777
autosteklo777
14.05.2022

1.1.D(y)=[-5;4]

2.Е(у)=[-1;3]

3.Нули функции х=-3; х=3.5

4. Промежутки знакопостоянства. у>0 при х∈[-5;-3)∪(-3;3.5)

y<0 при х∈(3.5;  4]

5. Функция возрастает при х∈[-3;1] и убывает при х∈[-5;-3];[1;4]

6. Наибольшее значение у=3; наименьшее у=-1

7.Ни четная, ни нечетная.

8 Не периодическая.

2. f(10)=100-80=20

f(-2)=4+16=20

f(0)=0

5. 1.D(y)=(-∞;+∞)

2.Е(у)=(-∞;-1]

3.Нули функции нет

4. Промежутки знакопостоянства. у>0 ни при каких х, а при х∈(-∞;+∞)

y<0

5. Функция возрастает при х∈(-∞;-3] и убывает при х∈[-3;+∞)

6. Наибольшее значение у=-1; наименьшего нет

7.Ни четная, ни нечетная.

8 Не периодическая.

4,6(86 оценок)
Ответ:
filippovdanis
filippovdanis
14.05.2022

y=3·x+4

Объяснение:

Абсцисса координат точек M(-2;-2) и N(2;10) различные (то есть прямая не проходит вертикально) и поэтому будем искать уравнение прямой в виде с угловым коэффициентом:

y=k·x+b.

Так как прямая проходить через точки M(-2;-2) и N(2;10), то подставим координаты точек в уравнение и получим систему уравнений относительно k и b:

\tt \displaystyle \left \{ {{-2=k \cdot (-2) + b} \atop {10=k \cdot 2 + b}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot k-2} \atop {10=2 \cdot k + 2 \cdot k-2}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot k-2} \atop {4 \cdot k =12}} \right.

\tt \displaystyle \left \{ {{b = 2 \cdot 3-2=4} \atop {k =3}} \right.

Подставляем найденные решения получим:

y=3·x+4.

Для решения задачи можно использовать общий вид уравнения прямой, проходящей через 2 точки M(x₁; y₁) и N(x₂; y₂):

\tt \displaystyle \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{x-x_{1}}{x_{2}-x_{1}}.

При заданных значениях координат M(-2;-2) и N(2;10) имеем:

\tt \displaystyle \frac{y-(-2)}{10-(-2)} = \frac{x-(-2)}{2-(-2)}\\\\\frac{y+2}{10+2} = \frac{x+2}{2+2} \\\\\frac{y+2}{12} = \frac{x+2}{4} \\\\y+2=12 \cdot \left(\frac{x+2}{4} \right)\\\\y+2=3 \cdot (x+2) \\\\y = 3 \cdot x + 4.

4,6(46 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ