Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Для начала надо понять, что такое 6: 6=3*2
Признаки делимости на 2:
четные числа то есть 2,4,6... таких будет 50
из этих пятидесяти надо найти те что делятся на 3
То есть сумма цифр должна делится на 3:
А при умножении на нечетные числа число три даст нечетное число
При умножении тройки на четные числа в результате получится четное число
Найдем сколько всего чисел делятся на 3 из 100 100:3=33 числа
Из них половина четных половина нечетных четных 16, так как первое 3 и последнее 33, то есть нечетных будет на 1 больше.
Это числа: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96
Теперь, те что будут давать в остатке 1: 6+1, 12+1, 18+1... 96+1 таких чисел будет 17 (последнее 97, не превышает 100) + Первое 1
Теперь те что будут давать в остатке 3: 6+3, 12+3, 18+3... 96+3 таких чисел тоже будет 17 (последнее 99, не превышет 100) + Первое 3