М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gfsfsdcxz
gfsfsdcxz
07.10.2020 18:54 •  Алгебра

.(1)найти наибольшее значение квадратного трехчлена -х^2+6x-4 2)не выполняя построения, определите пересекаются ли y-15x^2 и y=20-3x).

👇
Ответ:
otoshol62
otoshol62
07.10.2020

1) y=-x^2+6x-4

    y ' =-2x+6

    y ' =0

    -2x+6=0

     2x=6

     x=3

Методом интервалов определяем, что при x=3 функция имеет максимум

y(3)=-3^2+6*3-4=-9+18-4=5

 

2) y=(1/5)*x^2

    y=20-3x

   Прямые пересекаются если они имеют общие точки. Проверим

   (1/5)*x^2=20-3x

x^2=100-15x

x^2+15*x-100=0

D=b^2-4ac=625>0 - имеет два корня, то есть прямые пересекается в двух точках

4,7(61 оценок)
Открыть все ответы
Ответ:
saitovdamir20Damit
saitovdamir20Damit
07.10.2020

Объяснение:

Задание 2.

а) Координату х=5 будут иметь все точки , лежащие  на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5

б) Координату у=-3 будут иметь все точки , лежащие  на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3

рисунок 1 во вложении

Задание 3.

а) На координатной плоскости неравенство х ≥ 4  задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше  

рисунок 2 во вложении

б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные  полосы , которые имееют ординату 0 и 5  

рисунок 3 во вложении

Задание 4.

а) у = х;

найдем точки и построим график  

   х=0, у=0

   х=3 , у=3

   х=-3, у= -3

б) –3 ≤ х ≤ 3.

неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3

Изобразим множество точек на координатной плоскости

рисунок 4 во вложении

Задание 5

Решение во вложении

Задание 6

Если | x | ≤ 5 , значит    -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]

Отметим этот промежуток т.А и т.В  на координатной прямой ( рис. 5 во вложении)  

Отметим промежуток  –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D

Для того, чтобы определить  границы  промежутков [-5; 5] и [-7; 1] сравним левые  и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид:  х ϵ[-5; 1]


2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
4,8(70 оценок)
Ответ:
Аня24204
Аня24204
07.10.2020
1)  Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это  3 числа. 
 \frac{16*1+15x}{31} 
 x \in (-\infty;\frac{46}{15})\\&#10;\frac{46}{15} то есть  да может , так как \frac{46}{15} ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел.  
2)\frac{15+16x}{31} ,  целая часть этого числа равна 2 , то есть не может , так как в сумме 2=1+1 , и по количеству в этом наборе минимальное есть 16 единиц .  
3) 3+4+6=13\\&#10; так как мы ранее доказали что , есть не менее 16 единиц , и того 13+16=3932 что удовлетворяет условию .  
4,5(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ