Общая схема исследования и построения графика функции
При построении графиков функций можно придерживаться следующего плана:
1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - их нет, поэтому D(f) = R.
2. Выяснить, является ли функция четной или нечетной - ни та, ни другая.
3. Выяснить, является ли функция периодической - нет.
4. Найти точки пересечения графика с осями координат (нули функции).
Пересечение с осью ОУ: х = 0, у = 0,
с осью ОХ: у = 0, x³-3x²-9x = 0, вынесем х за скобки:
х(x²3x²-9) = 0, отсюда получаем значение первого корня:
х₁ = 0, далее приравниваем нулю квадратный трёхчлен:
x² - 3x - 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-3)^2-4*1*(-9)=9-4*(-9)=9-(-4*9)=9-(-36)=9+36=45;
Дискриминант больше 0, уравнение имеет 2 корня:
x₂=(2root45-(-3))/(2*1)=(√45+3)/2=√45/2+3/2 = 3√2/2+1.5 ≈ 4.85410197;
x₃=(-√45-(-3))/(2*1)=(-√45+3)/2=-√45/2+3/2=-3√2/2+1.5≈-1.85410197.
5. Найти асимптоты графика - не имеет.
6. Вычислить производную функции f'(x) и определить критические точки.
f(x)=x³-3x²-9x, f'(x)=3x²-6x-9 приравниваем нулю:
3x²-6x-9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=36-(-12*9)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√144-(-6))/(2*3)=(12-(-6))/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;
x₂=(-√144-(-6))/(2*3)=(-12-(-6))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1.
Критические точки x₁ = 3, x₂ = -1.
7. Найти промежутки монотонности функции: (-∞;-1), (-1;3),(3;+∞).
8. Определить экстремумы функции f(x).
Надо определить знаки производной на промежутках монотонности.
х = -2, у' = 3*4 + 12 - 9 = 15 функция возрастающая,
х = 2, у' = 3*4 - 12 - 9 = -9 функция убывающая,
х = 4, у' = 3*16 - 24 - 9 = 15 функция возрастающая.
9. Вычислить вторую производную f''(x) = 6х - 6 = 6(х - 1).
10. Определить направление выпуклости графика и точки перегиба:
функция вогнутая на промежутках [1, oo),11. Построить график, используя полученные результаты исследования.
ответ: 115 км/час.
Объяснение:
Дано.
Скорость по ровному участку Vровн. = х км/час.
Скорость под гору V под гору =х+5 км/час.
Скорость в гору V в гору = х-15 км/час.
Дорога от А к В равна 100 км в гору
Время туда и обратно затратил 1 час 50 мин.
Решение.
t1= S в гору/(x-15)час =100/(х-15).
t2= S под гору /(х+5) час = 100/(х+5).
Общее время 1 5/6 часа
100/(х-15) + 100/(х+5) = 1 5/6.
После преобразования получим уравнение
11х²-1310х+5175=0.
а=11; b= -1310; c= 5175;
D=1488400 >0 - 2 корня
х1= 115; х2= 4,09 - не соответствует условию.
Скорость автомобиля по ровному участку равна 115 км/час.
Проверим:
Скорость в гору равна 115-15=100 км/час
Скорость под гору равна 115+5=120 км/час
Время в пути 100/100+100/120=1+5/6 =1 5/6 часа или 1 час 50 минут.
Всё правильно!
1) ab - 8a - bx + 8x = a(b - 8) - x(b - 8) = (b - 8)(a - x)
2) ax - b + bx -a = ax + bx - (a + b) = x(a + b) - (a + b) = (a + b)(x - 1)
3) ax - y +x - ay= (ax - ay) + (x - y) = a(x - y) + (x - y) = (x - y)(a + 1)
4) ax- 2bx + ay -2by = (ax + ay) - (2bx + 2by) = a(x + y) - 2b(x + y) =
= (x + y)(a - 2b)