2.
a)5/3x+2/7x=(35+6)/21x=41/21x
b)
1/(x-3) - 1/(x+3) = [x+3-(x-3)/(x^2-9)]= 6/(x^2-9)
c)
7a^3 * 3b/14a^2 = a* 3b/2=3/2ab=1,5ab
d)
(12xy^2/5a^3 : 24y/(25a^2b) =
=12xy^2/5a^3 * 25a^2b/24y=
=xy/a *5ab/2 = 5bxy/2a
3.
a)
[x^2 +(6-x^4)/(x^2-1)] * (1+x)/(6-x^2)=
= [(x^4-x^2+6-x^4) / (x-1)(x+1) * (1+x)/(6-x^2)=
=(6-x^2)/[(x-1)(x+1)] * (x+1)/(6-x^2)= 1/(x-1)
b)
[(x+y)/3x+3) - 1/(x+1) ] : (1+x)/3 – 2/(1-x^2) =
=[(x+4-3)/3(x+1)] : [(1+x)/3] – 2/(1-x)(1+x) =
= (x+1)/3(x+1) * 3/1+x) - 2/(1-x)(1+x)= 1/(x+1) - 2/ (1-x)(1+x)=
=[(1-x-2)/(1-x)(1+x) =(-x-1)/(1-x)(1+x)= -(x+1)/(1-x)(1+x)=-1/(1-x)
1) 800 * 5% = 800 * 0.05 = 40 - скидка
800 - 40 = 760 - цена чайника
1000 - 760 = 240 - сдача.
2) √35 чуть меньше чем 6. Подумай, почему.
√120 - почти 11.
В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора:
15^2 = x^2 + 9^2
15^2 - 9^2 = x^2
x^2 = 225 - 81 = 144;
x = √144
Большее основание = меньшее основание + X.