(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
Объяснение:
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2+18x
или
f'(x)=3x(x+6)
Находим нули функции. Для этого приравниваем производную к нулю
x(x+6) = 0
Откуда:
x1 = 0
x2 = -6
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x+18
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x+18 = 0
Откуда точки перегиба:
x1 = -3
(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
Коэффициенты:
a = -2;
b = 1;
c = -3;
Q = ( a 2 - 3b ) = ( (-2) 2 - 3 × (1)) = 0.111199R = ( 2a 3 - 9ab + 27c ) = ( 2 × (-2) 3 - 9 × (-2) × (1) + 27 × (-3) ) = -1.4635454
Следовательно, по методу Виета-Кардано, уравнение имеет один действительный корень (общий случай) или два (вырожденный).
Кроме действительного корня, имеется два комплексно-сопряженных.
x 1 = 2.175
x 2 = -0.087 + i × (1.171)
x 3 = -0.087 - i × (1.171)