Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
Разделим для удобства на -2 (знак поменяется)
х²-5х+4>=0
Приравниваем к нулю
х²-5х+4=0
a=1 b=-5 c=4
Т.к. a=1, можно применить теорему Виета:
x1 + x2 = -b = 5
x1 * x2 = c = 4
x1 = 1
x2 = 4
Подставляем значение из промежутка для проверки вместо x, например 2:
-2*2²+10*2-8 = -8+20-8 = 4 (+) ,а нас интересуют отрицательные значения
Подставляем значение до 1, например -1:
-2*(-1²)+10*(-1)-8=-2-10-8=-20 (-)
Подставляем значение после 4, например 5:
-2*5²+10*5-8=-50+50-8 = -8 (-)
Следовательно, нас устраивают значения от минус бесконечности до 1 (включительно) и от 4 (включительно) до плюс бесконечности.
ответ: (-∞;1] и [4;+∞]
Надеюсь, всё понятно)