1)f(x)= x^4-2x^2-3; Найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1) Найдем критические точки, т. е f´(x)=0 4х (х-1)(х+1)=0 х=0 или х=1 или х=-1 -__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0 В точке х=-1 производная меняет знак с – на +, значит это точка минимума; В точке х=0 производная меняет знак с +на -, значит это точка максимума; В точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 Найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² Найдем критические точки, т. е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и Х+4≠0; х≠-4 Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0 f´(-5)= (-5+2)(-5+6)=-3*1<0 f´(-3)= (-3+2)(-3+6)=-1*3<0 f´(0)= (0+2)(0+6)=2*6>0 В точке х=-6 производная меняет знак с + на - значит это точка максимума; В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ; В точке х=-2 производная меняет знак с – на +, значит это точка минимума; Удачи!
Дерево возможных вариантов см. на рисунке. Отсюда наглядно виды все решения.
а) Сколько имеется различных освещения коридора, включая случай когда все лампочки не горят. Как видим, каждая лампочка имеет два состояния (горит/не горит). Т.к. лампочек три, то всего вариантов будет 2³ = 8. Все 8 вариантов представлены на рисунке.
б) Сколько имеется различных освещения, если известно что лампочки №1 и №2 горят или не горят одновременно? Когда лампочки №1 и №2 горят, то лампочка №3 либо горит, либо не горит (2 варианта). Точно также, когда лампочки №1 и №2 не горят, то лампочка №3 тоже либо горит, либо не горит (2 варианта). Итого, 4 варианта. Проверяем по рисунку.
в) Сколько имеется различных освещения, если известно что при горящей лампочке №3 лампочка №2 не горит? По рисунку считаем варианты - их 6. Когда лампочка №3 горит, то лампочка №2 не горит (по условию), а у лампочки №1 есть 2 варианта - горит/не горит. Когда лампочка №3 не горит, то вариантов у оставшихся лампочек будет 2² = 4. Вот и получается 6 вариантов.
г) сколько имеется различных освещения коридора когда горит большинство лампочек? Т.е. нам надо сосчитать случаи, когда одновременно горят 2 и более лампочек. По рисунку высчитываем, что есть 4 варианта. Или считаем число сочетаний двух лампочек из трёх, плюс число сочетаний три лампочки из трёх. Итак, 4 варианта.